
Seite 1Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

Migrate apps from Internet Explorer to Mozilla
From MDC

Contents
[hide]

1 Introduction

2 General cross-browser coding tips

3 Differences between Mozilla and Internet Explorer

3.1 Tooltips

3.2 Entities

4 DOM differences

4.1 Accessing elements

4.2 Traverse the DOM

4.3 Generate and manipulate content

4.4 Document fragments

5 JavaScript differences

5.1 JavaScript date differences

5.2 JavaScript execution differences

5.3 Differences in JavaScript-generating HTML

5.4 Debug JavaScript

6 CSS differences

6.1 Mimetypes (when CSS files are not applied)

6.2 CSS and units

6.3 JavaScript and CSS

6.4 CSS overflow differences

6.5 hover differences

7 Quirks versus standards mode

7.1 Standards mode

7.2 Almost standards mode

7.3 Quirks mode

8 Event differences

8.1 Attach event handlers

9 Rich text editing

9.1 Rich text differences

10 XML differences

10.1 How to handle XML

10.2 XML data islands

10.3 XMLHttpRequest

10.4 XSLT differences

11 Original Document Information

Introduction

Seite 2Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

When Netscape started the Mozilla browser, it made the conscious decision to support W3C
standards. As a result, Mozilla is not fully backwards-compatible with Netscape Navigator
4.x and Microsoft Internet Explorer legacy code; for example, Mozilla does not support
<layer> as I will discuss later. Browsers, like Internet Explorer 4, that were built before
the conception of W3C standards inherited many quirks. In this article, I will describe
Mozilla's quirks mode, which provides strong backwards HTML compatibility with Internet
Explorer and other legacy browsers.

I'll also cover nonstandard technologies, such as XMLHttpRequest and rich text editing, that
Mozilla does support because no W3C equivalent existed at the time. They include:

HTML 4.01 , XHTML 1.0 and XHTML 1.1
Cascade Style Sheets (CSS): CSS Level 1 , CSS Level 2.1 and parts of CSS Level
3
Document Object Model (DOM): DOM Level 1 , DOM Level 2 and parts of DOM Level
3
Mathematical Markup Language: MathML Version 2.0
Extensible Markup Language (XML): XML 1.0 , Namespaces in XML , Associating
Style Sheets with XML Documents 1.0 , Fragment Identifier for XML
XSL Transformations: XSLT 1.0
XML Path Language: XPath 1.0
Resource Description Framework: RDF
Simple Object Access Protocol: SOAP 1.1
ECMA-262, revision 3 (JavaScript 1.5): ECMA-262

General cross-browser coding tips
Even though Web standards do exist, different browsers behave differently (in fact, the
same browser may behave differently depending on the platform). Many browsers, such as
Internet Explorer, also support pre-W3C APIs and have never added extensive support for
the W3C-compliant ones.

Before I go into the differences between Mozilla and Internet Explorer, I'll cover some basic
ways you can make a Web application extensible in order to add new browser support later.

Since different browsers sometimes use different APIs for the same functionality, you can
often find multiple if() else() blocks throughout the code to differentiate between the
browsers. The following code shows blocks designated for Internet Explorer:

. . .

var elm;

if (ns4)
 elm = document.layers["myID"];
else if (ie4)
 elm = document.all["myID"]

The above code isn't extensible, so if you want it to support a new browser, you must
update these blocks throughout the Web application.

The easiest way to eliminate the need to recode for a new browser is to abstract out
functionality. Rather than multiple if() else() blocks, you increase efficiency by taking

Seite 3Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

common tasks and abstracting them out into their own functions. Not only does this make
the code easier to read, it simplifies adding support for new clients:

var elm = getElmById("myID");

function getElmById(aID){
 var element = null;

 if (isMozilla || isIE5)
 element = document.getElementById(aID);
 else if (isNetscape4)
 element = document.layers[aID];
 else if (isIE4)
 element = document.all[aID];

 return element;
}

The above code still has the issue of browser sniffing, or detecting which browser the user is
using. Browser sniffing is usually done through the useragent, such as:

Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.5) Gecko/20031016

While using the useragent to sniff the browser provides detailed information on the browser
in use, code that handles useragents often can make mistakes when new browser versions
arrive, thus requiring code changes.

If the type of browser doesn't matter (suppose that you have already blocked nonsupported
browsers from accessing the Web application), it is much better and more reliable to
sniff by browser capability or object feature support. You can usually do this by testing
the required functionality in JavaScript. For example, rather than:

if (isMozilla || isIE5)

You would use:

if (document.getElementById)

This would allow other browsers that support that W3C standard method, such as Opera or
Safari, to work without any changes.

Useragent sniffing, however, makes sense when accuracy is important, such as when you're
verifying that a browser meets the Web application's version requirements or you are trying
to work around a bug.

JavaScript also allows inline conditional statements, which can help with code readability:

var foo = (condition) ? conditionIsTrue : conditionIsFalse;

Seite 4Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

[edit]

[edit]

For example, to retrieve an element, you would use:

function getElement(aID){
 return (document.getElementById) ? document.getElementById(aID)
 : document.all[aID]);
}

Or another way is to use the || operator:

function getElement(aID){
 return (document.getElementById(aID)) || document.all[aID]);
}

Differences between Mozilla and Internet Explorer
First, I'll discuss the differences in the way HTML behaves between Mozilla and Internet
Explorer.

Tooltips
Legacy browsers introduced tooltips into HTML by showing them on links and using the value
of the alt attribute as a tooltip's content. The latest W3C HTML specification created the
title attribute, which is meant to contain a detailed description of the link. Modern
browsers will use the title attribute to display tooltips, and Mozilla only supports showing
tooltips for that attribute and not the alt attribute.

Entities
HTML markup can contain several entities, which the W3C web standards body has
defined. You can reference entities through their numerical or character reference. For
example, you can reference the white space character #160 with or with its
equivalent character reference .

Some older browsers, such as Internet Explorer, had such quirks as allowing you to use
entities by replacing the ; (semi-colon) character at the end with regular text content:

 Foo
 Foo

Mozilla will render the above as white spaces, even though that is against the W3C
specification. The browser will not parse a if it is directly followed by more
characters, for example:

 12345

Seite 5Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

[edit]

[edit]

This code does not work in Mozilla, since it goes against the W3C web standards. Always
use the correct form () to avoid browser discrepancies.

DOM differences
The Document Object Model (DOM) is the tree structure that contains the document
elements. You can manipulate it through JavaScript APIs, which the W3C has standardized.
However, prior to W3C standardization, Netscape 4 and Internet Explorer 4 implemented the
APIs similarly. Mozilla only implements legacy APIs if they are unachievable with W3C web
standards.

Accessing elements
To retrieve an element reference using the cross-browser approach, you use
document.getElementById(aID), which works in Internet Explorer 5.0+, Mozilla-
based browsers, other W3C-compliant browsers and is part of the DOM Level 1 specification.

Mozilla does not support accessing an element through document.elementName or even
through the element's name, which Internet Explorer does (also called global namespace
polluting). Mozilla also does not support the Netscape 4 document.layers method and
Internet Explorer's document.all. While document.getElementById lets you
retrieve one element, you can also use document.layers and document.all to
obtain a list of all document elements with a certain tag name, such as all <div> elements.

The W3C DOM Level 1 method gets references to all elements with the same tag name
through getElementsByTagName(). The method returns an array in JavaScript, and
can be called on the document element or other nodes to search only their subtree. To get
an array of all elements in the DOM tree, you can use getElementsByTagName("*").

The DOM Level 1 methods, as shown in Table 1, are commonly used to move an element to
a certain position and toggle its visibility (menus, animations). Netscape 4 used the
<layer> tag, which Mozilla does not support, as an HTML element that can be positioned
anywhere. In Mozilla, you can position any element using the <div> tag, which Internet
Explorer uses as well and which you'll find in the HTML specification.

Table 1. Methods used to access elements

Method Description

document.getElementById(aId) Returns a reference to the element with the
specified ID.

document.getElementsByTagName(
aTagName)

Returns an array of elements with the
specified name in the document.

Traverse the DOM
Mozilla supports the W3C DOM APIs for traversing the DOM tree through JavaScript (see
Table 2). The APIs exist for each node in the document and allow walking the tree in any
direction. Internet Explorer supports these APIs as well, but it also supports its legacy APIs
for walking a DOM tree, such as the children property.

Seite 6Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

Table 2. Methods used to traverse the DOM

Property/Method Description

childNodes Returns an array of all child nodes of the element.

firstChild Returns the first child node of the element.

getAttribute(
aAttributeName)

Returns the value for the specified attribute.

hasAttribute(
aAttributeName)

Returns a boolean stating if the current node has an attribute
defined with the specified name.

hasChildNodes() Returns a boolean stating whether the current node has any child
nodes.

lastChild Returns the last child node of the element.

nextSibling Returns the node immediately following the current one.

nodeName Returns the name of the current node as a string.

nodeType Returns the type of the current node.

Value Description

1 Element Node

2 Attribute Node

3 Text Node

4 CDATA Section Node

5 Entity Reference Node

6 Entity Node

7 Processing Instruction Node

8 Comment Node

9 Document Node

10 Document Type Node

11 Document Fragment Node

12 Notation Node

nodeValue Returns the value of the current node. For nodes that contain text,
such as text and comment nodes, it will return their string value. For
attribute nodes, the attribute value is returned. For all other nodes,
null is returned.

ownerDocument Returns the document object containing the current node.

parentNode Returns the parent node of the current node.

previousSibling Returns the node immediately preceding the current one.

removeAttribute(
aName)

Removes the specified attribute from the current node.

Seite 7Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

setAttribute(
aName, aValue)

Sets the value of the specified attribute with the specified value.

Internet Explorer has a nonstandard quirk, where many of these APIs will skip white space
text nodes that are generated, for example, by new line characters. Mozilla will not skip
these, so sometimes you need to distinguish these nodes. Every node has a nodeType
property specifying the node type. For example, an element node has type 1, while a text
node has type 3 and a comment node is type 8. The best way to only process element nodes
is to iterate over all child nodes and only process those with a nodeType of 1:

HTML:
 <div id="foo">
 Test
 </div>

JavaScript:
 var myDiv = document.getElementById("foo");
 var myChildren = myXMLDoc.childNodes;
 for (var i = 0; i < myChildren.length; i++) {
 if (myChildren[i].nodeType == 1){
 // element node
 };
 };

Generate and manipulate content
Mozilla supports the legacy methods for adding content into the DOM dynamically, such as
document.write, document.open and document.close. Mozilla also supports
Internet Explorer's innerHTML method, which it can call on almost any node. It does not,
however, support outerHTML (which adds markup around an element, and has no
standard equivalent) and innerText (which sets the text value of the node, and which
you can achieve in Mozilla by using textContent).

Internet Explorer has several content manipulation methods that are nonstandard and
unsupported in Mozilla, including retrieving the value, inserting text and inserting elements
adjacent to a node, such as getAdjacentElement and insertAdjacentHTML. Table
3 shows how the W3C standard and Mozilla manipulate content, all of which are methods of
any DOM node.

Table 3. Methods Mozilla uses to manipulate content

Method Description

appendChild(aNode) Creates a new child node. Returns a reference to the new child
node.

cloneNode(aDeep) Makes a copy of the node it is called on and returns the copy.
If aDeep is true, it copies over the node's entire subtree.

createElement(
aTagName)

Creates and returns a new and parentless DOM node of the
type specified by aTagName.

createTextNode(
aTextValue)

Creates and returns a new and parentless DOM textnode with
the data value specified by aTextValue.

Seite 8Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

[edit]

[edit]

[edit]

insertBefore(aNewNode,
aChildNode)

Inserts aNewNode before aChildNode, which must be a child of
the current node.

removeChild(
aChildNode)

Removes aChildNode and returns a reference to it.

replaceChild(aNewNode,
aChildNode)

Replaces aChildNode with aNewNode and returns a reference
to the removed node.

Document fragments
For performance reasons, you can create documents in memory, rather than working on the
existing document's DOM. DOM Level 1 Core introduced document fragments, which are
lightweight documents that contain a subset of a normal document's interfaces. For
example, getElementById does not exist, but appendChild does. You can also easily
add document fragments to existing documents.

Mozilla creates document fragments through document.createDocumentFragment
(), which returns an empty document fragment.

Internet Explorer's implementation of document fragments, however, does not comply with
the W3C web standards and simply returns a regular document.

JavaScript differences
Most differences between Mozilla and Internet Explorer are usually blamed on JavaScript.
However, the issues usually lie in the APIs that a browser exposes to JavaScript, such as the
DOM hooks. The two browsers possess few core JavaScript differences; issues encountered
are often timing related.

JavaScript date differences
The only Date difference is the getYear method. As per the ECMAScript specification
(which is the specification JavaScript follows), the method is not Y2k-compliant, and running
new Date().getYear() in 2004 will return "104". Per the ECMAScript specification,
getYear returns the year minus 1900, originally meant to return "98" for 1998. getYear
was deprecated in ECMAScript Version 3 and replaced with getFullYear(). Internet
Explorer changed getYear() to work like getFullYear() and make it Y2k-compliant,
while Mozilla kept the standard behavior.

JavaScript execution differences
Different browsers execute JavaScript differently. For example, the following code assumes
that the div node already exists in the DOM by the time the script block executes:

...
<div id="foo">Loading...</div>

<script>

Seite 9Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

 document.getElementById("foo").innerHTML = "Done.";
</script>

However, this is not guaranteed. To be sure that all elements exist, you should use the
onload event handler on the <body> tag:

<body onload="doFinish();">

<div id="foo">Loading...</div>

<script>
 function doFinish() {
 var element = document.getElementById("foo");
 element.innerHTML = "Done.";
 }
</script>
...

Such timing-related issues are also hardware-related -- slower systems can reveal bugs that
faster systems hide. One concrete example is window.open, which opens a new window:

<script>
 function doOpenWindow(){
 var myWindow = window.open("about:blank");
 myWindow.location.href = "http://www.ibm.com";
 }
</script>

The problem with the code is that window.open is asynchronous -- it does not block the
JavaScript execution until the window has finished loading. Therefore, you may execute the
line after the window.open line before the new window has finished. You can deal with
this by having an onload handler in the new window and then call back into the opener
window (using window.opener).

Differences in JavaScript-generating HTML
JavaScript can, through document.write, generate HTML on the fly from a string. The
main issue here is when JavaScript, embedded inside an HTML document (thus, inside an
<script> tag), generates HTML that contains a <script> tag. If the document is in
strict rendering mode, it will parse the </script> inside the string as the closing tag for
the enclosing <script>. The following code illustrates this best:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
...
<script>
 document.write("<script type='text\/javascript'>alert('Hello');<\/
script>")
</script>

Since the page is in strict mode, Mozilla's parser will see the first <script> and parse until
it finds a closing tag for it, which would be the first </script>. This is because the parser

Seite 10Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

has no knowledge about JavaScript (or any other language) when in strict mode. In quirks
mode, the parser is aware of JavaScript when parsing (which slows it down). Internet
Explorer is always in quirks mode, as it does not support true XHTML. To make this work in
strict mode in Mozilla, separate the string into two parts:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
...
<script>
 document.write("<script type='text\/javascript'>alert('Hello');</"
 + "script>")
</script>

Debug JavaScript
Mozilla provides several ways to debug JavaScript-related issues found in applications
created for Internet Explorer. The first tool is the built-in JavaScript console, shown in Figure
1, where errors and warnings are logged. You can access it in Mozilla by going to Tools ->
Web Development -> JavaScript Console or in Firefox (the standalone browser product
from Mozilla) at Tools -> JavaScript Console.

Figure 1. JavaScript console

The JavaScript console can show the full log list or just errors, warnings, and messages. The
error message in Figure 1 says that at aol.com, line 95 tries to access an undefined variable
called is_ns70. Clicking on the link will open Mozilla's internal view source window with the
offending line highlighted.

The console also allows you to evaluate JavaScript. To evaluate the entered JavaScript
syntax, type in 1+1 into the input field and press Evaluate, as Figure 2 shows.

Figure 2. JavaScript console evaluating

Seite 11Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

Mozilla's JavaScript engine has built-in support for debugging, and thus can provide powerful
tools for JavaScript developers. Venkman, shown in Figure 3, is a powerful, cross-platform
JavaScript debugger that integrates with Mozilla. It is usually bundled with Mozilla releases;
you can find it at Tools -> Web Development -> JavaScript Debugger. For Firefox, the
debugger isn't bundled; instead, you can download and install it from the Venkman Project
Page . You can also find tutorials at the development page, located at the Venkman
Development Page .

Figure 3. Mozilla's JavaScript debugger

The JavaScript debugger can debug JavaScript running in the Mozilla browser window. It
supports such standard debugging features as breakpoint management, call stack

Seite 12Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

[edit]

[edit]

inspection, and variable/object inspection. All features are accessible through the user
interface or through the debugger's interactive console. With the console, you can execute
arbitrary JavaScript in the same scope as the JavaScript currently being debugged.

CSS differences
Mozilla-based products have the strongest support for Cascading Style Sheets (CSS),
including most of CSS1, CSS2.1 and parts of CSS3, compared to Internet Explorer as well as
all other browsers.

For most issues mentioned below, Mozilla will add an error or warning entry into the
JavaScript console. Check the JavaScript console if you encounter CSS-related issues.

Mimetypes (when CSS files are not applied)
The most common CSS-related issue is that CSS definitions inside referenced CSS files are
not applied. This is usually due to the server sending the wrong mimetype for the CSS file.
The CSS specification states that CSS files should be served with the text/css mimetype.
Mozilla will respect this and only load CSS files with that mimetype if the Web page is in
strict standards mode. Internet Explorer will always load the CSS file, no matter with which
mimetype it is served. Web pages are considered in strict standards mode when they start
with a strict doctype. To solve this problem, you can make the server send the right
mimetype or remove the doctype. I'll discuss more about doctypes in the next section.

CSS and units
Many Web applications do not use units with their CSS, especially when you use JavaScript
to set the CSS. Mozilla tolerates this, as long as the page is not rendered in strict mode.
Since Internet Explorer does not support true XHTML, it does not care if no units are
specified. If the page is in strict standards mode, and no units are used, then Mozilla ignores
the style:

<DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
 <title>CSS and units example</title>
 </head>
 <body>
 // works in strict mode
 <div style="width: 40px; border: 1px solid black;">
 Text
 </div>

 // will fail in strict mode
 <div style="width: 40; border: 1px solid black;">
 Text
 </div>
 </body>
</html>

Seite 13Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

[edit]

Since the above example has a strict doctype, the page is rendered in strict standards
mode. The first div will have a width of 40px, since it uses units, but the second div won't
get a width, and thus will default to 100% width. The same would apply if the width were
set through JavaScript.

JavaScript and CSS
Since Mozilla supports the CSS standards, it also supports the CSS DOM standard for setting
CSS through JavaScript. You can access, remove, and change an element's CSS rules
through the element's style member:

<div id="myDiv" style="border: 1px solid black;">
 Text
</div>

<script>
 var myElm = document.getElementById("myDiv");
 myElm.style.width = "40px";
</script>

You can reach every CSS attribute that way. Again, if the Web page is in strict mode, you
must set a unit or else Mozilla will ignore the command. When you query a value, say
through .style.width, in Mozilla and Internet Explorer, the returned value will contain
the unit, meaning a string is returned. You can convert the string into a number through
parseFloat("40px").

CSS overflow differences
CSS added the notion of overflow, which allows you to define how to handle overflow; for
example, when the contents of a div with a specified height are taller than that height. The
CSS standard defines that if no overflow behavior is set in this case, the div contents will
overflow. However, Internet Explorer does not comply with this and will expand the div
beyond its set height in order to hold the contents. Below is an example that shows this
difference:

<div style="height: 100px; border: 1px solid black;">
 <div style="height: 150px; border: 1px solid red; margin: 10px;">
 a
 </div>
</div>

As you can see in Figure 4, Mozilla acts like the W3C standard specifies. The W3C standard
says that, in this case, the inner div overflows to the bottom since the inner content is
taller than its parent. If you prefer the Internet Explorer behavior, simply do not specify a
height on the outer element.

Figure 4. DIV overflow

Seite 14Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

[edit]

hover differences
The nonstandard CSS hover behavior in Internet Explorer occurs on quite a few web sites. It
usually manifests itself by changing text style when hovered over in Mozilla, but not in
Internet Explorer. This is because the a:hover CSS selector in Internet Explorer matches
... but not ..., which sets anchors in HTML.
The text changes occur because authors encapsulate the areas with the anchor-setting
markup:

CSS:
 a:hover {color: green;}

HTML:
 This text should turn green when you hover over
it.

 This text should change color when hovered over, but doesn't
 in Internet Explorer.

Mozilla follows the CSS specification correctly and will change the color to green in this
example. You can use two ways to make Mozilla behave like Internet Explorer and not
change the color of the text when hovered over:

First, you can change the CSS rule to be a:link:hover {color: green;},
which will only change the color if the element is a link (has an href attribute).
Alternatively, you can change the markup and close the opened <a /> before the
start of the text -- the anchor will continue to work this way.

Seite 15Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

[edit]

Quirks versus standards mode
Older legacy browsers, such as Internet Explorer 4, rendered with so-called quirks under
certain conditions. While Mozilla aims to be a standards-compliant browser, it has three
modes that support older Web pages created with these quirky behaviors. The page's
content and delivery determine which mode Mozilla will use. Mozilla will indicate the
rendering mode in View -> Page Info (or Ctrl+I) ; Firefox will list the rendering mode in

Tools -> Page Info. The mode in which a page is located depends on its doctype.

Doctypes (short for document type declarations) look like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

The section in blue is called the public identifier, the green part is the system identifier,
which is a URI.

Standards mode
Standards mode is the strictest rendering mode -- it will render pages per the W3C HTML
and CSS specifications and will not support any quirks. Mozilla uses it for the following
conditions:

If a page is sent with a text/xml mimetype or any other XML or XHTML mimetype
For any "DOCTYPE HTML SYSTEM" doctype (for example, <!DOCTYPE HTML
SYSTEM "http://www.w3.org/TR/REC-html40/strict.dtd">), except
for the IBM doctype
For unknown doctypes or doctypes without DTDs

Almost standards mode
Mozilla introduced almost standards mode for one reason: a section in the CSS 2
specification breaks designs based on a precise layout of small images in table cells. Instead
of forming one image to the user, each small image ends up with a gap next to it. The old
IBM homepage shown in Figure 5 offers an example.

Figure 5. Image gap

Seite 16Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

[edit]

Almost standards mode behaves almost exactly as standards mode, except when it comes
to an image gap issue. The issue occurs often on standards-compliant pages and causes
them to display incorrectly.

Mozilla uses almost standards mode for the following conditions:

For any "loose" doctype (for example, <!DOCTYPE HTML PUBLIC "-//W3C//
DTD XHTML 1.0 Transitional//EN">, <!DOCTYPE HTML PUBLIC "-//
W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/
html4/loose.dtd">)
For the IBM doctype (<!DOCTYPE html SYSTEM "http://www.ibm.com/
data/dtd/v11/ibmxhtml1-transitional.dtd">)

You can read more about the image gap issue.

Quirks mode
Currently, the Web is full of invalid HTML markup, as well as markup that only functions due
to bugs in browsers. The old Netscape browsers, when they were the market leaders, had
bugs. When Internet Explorer arrived, it mimicked those bugs in order to work with the
content at that time. As newer browsers came to market, most of these original bugs,
usually called quirks, were kept for backwards compatibility. Mozilla supports many of these
in its quirks rendering mode. Note that due to these quirks, pages will render slower than if
they were fully standards-compliant. Most Web pages are rendered under this mode.

Mozilla uses quirks mode for the following conditions:

When no doctype is specified
For doctypes without a system identifier (for example, <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN">)

For further reading, check out: Mozilla Quirks Mode Behavior and Mozilla's DOCTYPE sniffing.

Event differences
Mozilla and Internet Explorer are almost completely different in the area of events. The
Mozilla event model follows the W3C and Netscape model. In Internet Explorer, if a function
is called from an event, it can access the event object through window.event. Mozilla
passes an event object to event handlers. They must specifically pass the object on to the
function called through an argument.

A cross-browser event handling example follows (note that it means you can't define a
global variable named event in your code):

<div onclick="handleEvent(event);">Click me!</div>

<script>
 function handleEvent(aEvent) {
 var myEvent = window.event ? window.event : aEvent;
 }
</script>

Seite 17Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

The properties and functions that the event object exposes are also often named differently
in Mozilla and Internet Explorer, as Table 4 shows.

Table 4. Event properties differences between Mozilla and Internet Explorer

Internet
Explorer
Name

Mozilla Name Description

altKey altKey Boolean property that returns whether the alt key was
pressed during the event.

cancelBubble stopPropagation
()

Used to stop the event from bubbling farther up the
tree.

clientX clientX The X coordinate of the event, in relation to the
element viewport.

clientY clientY The Y coordinate of the event, in relation to the
element viewport.

ctrlKey ctrlKey Boolean property that returns whether the Ctrl key was
pressed during the event.

fromElement relatedTarget For mouse events, this is the element from which the
mouse moved away.

keyCode keyCode For keyboard events, this is a number representing the
key that was pressed. It is 0 for mouse events. For
keypress events (not keydown/keyup) of keys that
produce output, the Mozilla equivalent is charCode, not
keyCode.

returnValue preventDefault
()

Used to prevent the event's default action from
occurring.

screenX screenX The X coordinate of the event, in relation to the screen.

screenY screenY The Y coordinate of the event, in relation to the screen.

shiftKey shiftKey Boolean property that returns whether the Shift key was
pressed during the event.

srcElement target The element to which the event was originally
dispatched.

toElement currentTarget For mouse events, this is the element to which the
mouse moved.

type type Returns the name of the event.

Attach event handlers
Mozilla supports two ways to attach events through JavaScript. The first, supported by all
browsers, sets event properties directly on objects. To set a click event handler, a
function reference is passed to the object's onclick property:

Seite 18Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

<div id="myDiv">Click me!</div>

<script>
 function handleEvent(aEvent) {
 // if aEvent is null, means the Internet Explorer event model,
 // so get window.event.
 var myEvent = aEvent ? aEvent : window.event;
 }

 function onPageLoad(){
 document.getElementById("myDiv").onclick = handleEvent;
 }
</script>

Mozilla fully supports the W3C standard way of attaching listeners to DOM nodes. You use
the addEventListener() and removeEventListener() methods, and have the
benefit of being able to set multiple listeners for the same event type. Both methods require
three parameters: the event type, a function reference, and a boolean denoting whether the
listener should catch events in their capture phase. If the boolean is set to false, it will only
catch bubbling events. W3C events have three phases: capturing, at target, and bubbling.
Every event object has an eventPhase attribute indicating the phase numerically (0
indexed). Every time you trigger an event, the event starts at the DOM's outermost
element, the element at the top of the DOM tree. It then walks the DOM using the most
direct route toward the target, which is the capturing phase. When the event reaches the
target, the event is in the target phase. After arriving at the target, it walks up the DOM
tree back to the outermost node; this is bubbling. Internet Explorer's event model only has
the bubbling phase; therefore, setting the third parameter to false results in Internet
Explorer-like behavior:

<div id="myDiv">Click me!</div>

<script>

 function handleEvent(aEvent) {
 // if aEvent is null, it is the Internet Explorer event model,
 // so get window.event.
 var myEvent = aEvent ? aEvent : window.event;
 }

 function onPageLoad() {
 var element = document.getElementById("myDiv");
 element.addEventListener("click", handleEvent, false);
 }
</script>

One advantage of addEventListener() and removeEventListener() over setting
properties is that you can have multiple event listeners for the same event, each calling
another function. Thus, to remove an event listener requires all three parameters be the
same as the ones you use when adding the listener.

Mozilla does not support Internet Explorer's method of converting <script> tags into event
handlers, which extends <script> with for and event attributes (see Table 5). It also
does not support the attachEvent and detachEvent methods. Instead, you should

Seite 19Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

[edit]

use the addEventListener and removeEventListener methods. Internet Explorer
does not support the W3C events specification.

Table 5. Event method differences between Mozilla and Internet Explorer

Internet Explorer Method Mozilla Method Description

attachEvent(aEventType,
aFunctionReference)

addEventListener(aEventType,
aFunctionReference, aUseCapture)

Adds an event listener
to a DOM element.

detachEvent(aEventType,
aFunctionReference)

removeEventListener(aEventType,
aFunctionReference, aUseCapture)

Removes an event
listener to a DOM
element.

Rich text editing
While Mozilla prides itself with being the most W3C web standards compliant browser, it
does support nonstandard functionality, such as innerHTML and rich text editing, if no
W3C equivalent exists.

Mozilla 1.3 introduced an implementation of Internet Explorer's designMode feature, which
turns an HTML document into a rich text editor field. Once turned into the editor, commands
can run on the document through the execCommand command. Mozilla does not support
Internet Explorer's contentEditable attribute for making any widget editable. You can
use an iframe to add a rich text editor.

Rich text differences
Mozilla supports the W3C standard of accessing iframe's document object through
IFrameElmRef.contentDocument, while Internet Explorer requires you to access it
through document.frames["IframeName"] and then access the resulting
document:

<script>
function getIFrameDocument(aID) {
 var rv = null;

 // if contentDocument exists, W3C compliant (Mozilla)
 if (document.getElementById(aID).contentDocument){
 rv = document.getElementById(aID).contentDocument;
 } else {
 // IE
 rv = document.frames[aID].document;
 }
 return rv;
}
</script>

Another difference between Mozilla and Internet Explorer is the HTML that the rich text
editor creates. Mozilla defaults to using CSS for the generated markup. However, Mozilla
allows you to toggle between HTML and CSS mode using the useCSS execCommand and
toggling it between true and false. Internet Explorer always uses HTML markup.

Seite 20Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

Mozilla (CSS):
 Big Blue

Mozilla (HTML):
 Big Blue

Internet Explorer:
 Big Blue

Below is a list of commands that execCommand in Mozilla supports:

Table 6. Rich text editing commands

Command Name Description Argument

bold Toggles the selection's bold attribute. ---

createlink Generates an HTML link from the
selected text.

The URL to use for the link

delete Deletes the selection. ---

fontname Changes the font used in the selected
text.

The font name to use
(Arial, for example)

fontsize Changes the font size used in the
selected text.

The font size to use

fontcolor Changes the font color used in the
selected text.

The color to use

indent Indents the block where the caret is. ---

inserthorizontalrule Inserts an <hr> element at the cursor's
position.

insertimage Inserts an image at the cursor's position. URL of the image to use

insertorderedlist Inserts an ordered list () element at
the cursor's position.

insertunorderedlist Inserts an unordered list () element
at the cursor's position.

italic Toggles the selection's italicize attribute. ---

justifycenter Centers the content at the current line. ---

justifyleft Justifies the content at the current line to
the left.

justifyright Justifies the content at the current line to
the right.

outdent Outdents the block where the caret is. ---

redo Redoes the previous undo command. ---

removeformat Removes all formatting from the
selection.

Seite 21Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

[edit]

selectall Selects everything in the rich text editor. ---

strikethrough Toggles the strikethrough of the selected
text.

subscript Converts the current selection into
subscript.

superscript Converts the current selection into
superscript.

underline Toggles the underline of the selected
text.

undo Undoes the last executed command. ---

unlink Removes all link information from the
selection.

useCSS Toggles the usage of CSS in the
generated markup.

Boolean value

For more information, visit Rich-Text Editing in Mozilla.

XML differences
Mozilla has strong support for XML and XML-related technologies, such as XSLT and Web
services. It also supports some non-standard Internet Explorer extensions, such as
XMLHttpRequest.

How to handle XML
As with standard HTML, Mozilla supports the W3C XML DOM specification, which allows you
to manipulate almost any aspect of an XML document. Differences between Internet
Explorer's XML DOM and Mozilla are usually caused by Internet Explorer's nonstandard
behaviors. Probably the most common difference is how they handle white space text nodes.
Often when XML generates, it contains white spaces between XML nodes. Internet Explorer,
when using Node.childNodes, will not contain these white space nodes. In Mozilla,
those nodes will be in the array.

XML:
 <?xml version="1.0"?>
 <myXMLdoc xmlns:myns="http://myfoo.com">
 <myns:foo>bar</myns:foo>
 </myXMLdoc>

JavaScript:
 var myXMLDoc = getXMLDocument().documentElement;
 alert(myXMLDoc.childNodes.length);

The first line of JavaScript loads the XML document and accesses the root element
(myXMLDoc) by retrieving the documentElement. The second line simply alerts the

Seite 22Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

number of child nodes. Per the W3C specification, the white spaces and new lines merge into
one text node if they follow each other. For Mozilla, the myXMLdoc node has three children:
a text node containing a new line and two spaces; the myns:foo node; and another text
node with a new line. Internet Explorer, however, does not abide by this and will return "1"
for the above code, namely only the myns:foo node. Therefore, to walk the child nodes
and disregard text nodes, you must distinguish such nodes.

As mentioned earlier, every node has a nodeType property representing the node type.
For example, an element node has type 1, while a document node has type 9. To disregard
text nodes, you must check for types 3 (text node) and 8 (comment node).

XML:
 <?xml version="1.0"?>
 <myXMLdoc xmlns:myns="http://myfoo.com">
 <myns:foo>bar</myns:foo>
 </myXMLdoc>

JavaScript:
 var myXMLDoc = getXMLDocument().documentElement;
 var myChildren = myXMLDoc.childNodes;

 for (var run = 0; run < myChildren.length; run++){
 if ((myChildren[run].nodeType != 3) &&
 myChildren[run].nodeType != 8)){
 // not a text or comment node
 };
 };

See Whitespace in the DOM for more detailed discussion and a possible solution.

XML data islands
Internet Explorer has a nonstandard feature called XML data islands , which allow you to
embed XML inside an HTML document using the nonstandard HTML tag <xml>. Mozilla does
not support XML data islands and handles them as unknown HTML tags. You can achieve the
same functionality using XHTML; however, because Internet Explorer's support for XHTML is
weak, this is usually not an option.

IE XML data island:

<xml id="xmldataisland">
 <foo>bar</foo>
</xml>

One cross-browser solution is to use DOM parsers, which parse a string that contains a
serialized XML document and generates the document for the parsed XML. Mozilla uses the
DOMParser object, which takes the serialized string and creates an XML document out of
it. In Internet Explorer, you can achieve the same functionality using ActiveX. The object
created using new ActiveXObject("Microsoft.XMLDOM") has a loadXML method
that can take in a string and generate a document from it. The following code shows you
how:

Seite 23Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

var xmlString = "<xml id=\"xmldataisland\"><foo>bar</foo></xml>";
var myDocument;

if (window.DOMParser) {
 // This browser appears to support DOMParser
 var parser = new DOMParser();
 myDocument = parser.parseFromString(xmlString, "text/xml");
} else if (window.ActiveXObject){
 // Internet Explorer, create a new XML document using ActiveX
 // and use loadXML as a DOM parser.
 myDocument = new ActiveXObject("Microsoft.XMLDOM");
 myDocument.async = false;

 myDocument.loadXML(xmlString);
} else {
 // Not supported.
}

See Using XML Data Islands in Mozilla for an alternative approach.

XMLHttpRequest
Internet Explorer allows you to send and retrieve XML files using MSXML's XMLHTTP class,
which is instantiated through ActiveX using new ActiveXObject
("Msxml2.XMLHTTP") or new ActiveXObject("Microsoft.XMLHTTP"). Since
there is no standard method of doing this, Mozilla provides the same functionality in the
global JavaScript XMLHttpRequest object. Since version 7 IE also supports the "native"
XMLHttpRequest object.

After instantiating the object using new XMLHttpRequest(), you can use the open
method to specify what type of request (GET or POST) you use, which file you load, and if it
is asynchronous or not. If the call is asynchronous, then give the onload member a
function reference, which is called once the request has completed.

Synchronous request:

var myXMLHTTPRequest = new XMLHttpRequest();
myXMLHTTPRequest.open("GET", "data.xml", false);

myXMLHTTPRequest.send(null);

var myXMLDocument = myXMLHTTPRequest.responseXML;

Asynchronous request:

var myXMLHTTPRequest;

function xmlLoaded() {
 var myXMLDocument = myXMLHTTPRequest.responseXML;
}

function loadXML(){
 myXMLHTTPRequest = new XMLHttpRequest();
 myXMLHTTPRequest.open("GET", "data.xml", true);
 myXMLHTTPRequest.onload = xmlLoaded;

Seite 24Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

 myXMLHTTPRequest.send(null);
}

Table 7 features a list of available methods and properties for Mozilla's XMLHttpRequest.

Table 7. XMLHttpRequest methods and properties

Name Description

void abort() Stops the request if it is still running.

string getAllResponseHeaders
()

Returns all response headers as one string.

string getResponseHeader
(string headerName)

Returns the value of the specified header.

functionRef onerror If set, the references function will be called whenever an
error occurs during the request.

functionRef onload If set, the references function will be called when the
request completes successfully and the response has been
received. Use when an asynchronous request is used.

void open (string HTTP_
Method, string URL)

void open (string HTTP_
Method, string URL, boolean
async, string userName, string
password)

Initializes the request for the specified URL, using either
GET or POST as the HTTP method. To send the request,
call the send() method after initialization. If async is
false, the request is synchronous, else it defaults to
asynchronous. Optionally, you can specify a username
and password for the given URL needed.

int readyState State of the request. Possible values:

Value Description

0 UNINITIALIZED - open() has not been called
yet.

1 LOADING - send() has not been called yet.

2 LOADED - send() has been called, headers and
status are available.

3 INTERACTIVE - Downloading, responseText
holds the partial data.

4 COMPLETED - Finished with all operations.

string responseText String containing the response.

DOMDocument responseXML DOM Document containing the response.

void send(variant body) Initiates the request. If body is defined, it is sent as the
body of the POST request. body can be an XML document
or a string serialized XML document.

void setRequestHeader (string
headerName, string
headerValue)

Sets an HTTP request header for use in the HTTP request.
Has to be called after open() is called.

Seite 25Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

string status The status code of the HTTP response.

XSLT differences
Mozilla supports XSL Transformations (XSLT) 1.0. It also allows JavaScript to perform XSLT
transformations and allows running XPath on a document.

Mozilla requires that you send the XML and XSLT files with an XML mimetype (text/xml or
application/xml). This is the most common reason why XSLT won't run in Mozilla but
will in Internet Explorer. Mozilla is strict in that way.

Internet Explorer 5.0 and 5.5 supported XSLT's working draft, which is substantially different
than the final 1.0 recommendation. The easiest way to distinguish what version an XSLT file
was written against is to look at the namespace. The namespace for the 1.0
recommendation is http://www.w3.org/1999/XSL/Transform, while the working
draft's namespace is http://www.w3.org/TR/WD-xsl. Internet Explorer 6 supports
the working draft for backwards compatibility, but Mozilla does not support the working
draft, only the final recommendation.

If XSLT requires you to distinguish the browser, you can query the "xsl:vendor" system
property. Mozilla's XSLT engine will report itself as "Transformiix" and Internet Explorer will
return "Microsoft".

<xsl:if test="system-property('xsl:vendor') = 'Transformiix'">
 <!-- Mozilla specific markup -->
</xsl:if>
<xsl:if test="system-property('xsl:vendor') = 'Microsoft'">
 <!-- Internet Explorer specific markup -->
</xsl:if>

Mozilla also provides JavaScript interfaces for XSLT, allowing a Web site to complete XSLT
transformations in memory. You can do this using the global XSLTProcessor JavaScript
object. XSLTProcessor requires you to load the XML and XSLT files, because it needs
their DOM documents. The XSLT document, imported by the XSLTProcessor, allows you
to manipulate XSLT parameters.

XSLTProcessor can generate a standalone document using transformToDocument
(), or it can create a document fragment using transformToFragment(), which you
can easily append into another DOM document. Below is an example:

var xslStylesheet;
var xsltProcessor = new XSLTProcessor();

// load the xslt file, example1.xsl
var myXMLHTTPRequest = new XMLHttpRequest();
myXMLHTTPRequest.open("GET", "example1.xsl", false);
myXMLHTTPRequest.send(null);

// get the XML document and import it
xslStylesheet = myXMLHTTPRequest.responseXML;

xsltProcessor.importStylesheet(xslStylesheet);

Seite 26Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

[edit]

// load the xml file, example1.xml
myXMLHTTPRequest = new XMLHttpRequest();
myXMLHTTPRequest.open("GET", "example1.xml", false);
myXMLHTTPRequest.send(null);

var xmlSource = myXMLHTTPRequest.responseXML;

var resultDocument = xsltProcessor.transformToDocument(xmlSource);

After creating an XSLTProcessor, you load the XSLT file using XMLHttpRequest. The
XMLHttpRequest's responseXML member contains the XML document of the XSLT file,
which is passed to importStylesheet. You then use the XMLHttpRequest again to
load the source XML document that must be transformed; that document is then passed to
the transformToDocument method of XSLTProcessor. Table 8 features a list of
XSLTProcessor methods.

Table 8. XSLTProcessor methods

Method Description

void importStylesheet(Node
styleSheet)

Imports the XSLT stylesheet. The styleSheet argument
is the root node of an XSLT stylesheet's DOM document.

DocumentFragment
transformToFragment(Node
source, Document owner)

Transforms the Node source by applying the stylesheet
imported using the importStylesheet method and
generates a DocumentFragment. owner specifies what
DOM document the DocumentFragment should belong to,
making it appendable to that DOM document.

Document
transformToDocument(Node
source)

Transforms the Node source by applying the stylesheet
imported using the importStylesheet method and
returns a standalone DOM document.

void setParameter(String
namespaceURI, String
localName, Variant value)

Sets a parameter in the imported XSLT stylesheet.

Variant getParameter(String
namespaceURI, String
localName)

Gets the value of a parameter in the imported XSLT
stylesheet.

void removeParameter(String
namespaceURI, String
localName)

Removes all set parameters from the imported XSLT
stylesheet and makes them default to the XSLT-defined
defaults.

void clearParameters() Removes all set parameters and sets them to defaults
specified in the XSLT stylesheet.

void reset() Removes all parameters and stylesheets.

Original Document Information

Author(s): Doron Rosenberg, IBM Corporation

Published: 26 Jul 2005

Seite 27Migrate apps from Internet Explorer to Mozilla - MDC

09.03.2007 17:28:52http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_Explorer_to_Mozilla

Link: http://www-128.ibm.com/developerworks/web/library/wa-ie2mozgd/

Migration d'applications d'Internet Explorer vers Mozilla

Retrieved from "http://developer.mozilla.org/en/docs/Migrate_apps_from_Internet_
Explorer_to_Mozilla "

