
Introduction to Touch events in JavaScript
Date created: Aug 1st, 2013
In this tutorial lets get touchy feely with JavaScript, by examining its touch related events and how they are used to de-
tect and respond to touch and swipe events. With touch based devices ever growing in numbers, grasping these events is
as essential as understanding the age old mouse events. Examples in this tutorial can be appreciated in both touch and
non-touch enabled devices, with the later falling back to your trusted mouse instead. Ready to give those fingers a bit of
a workout? Lets go!

JavaScript Touch Events
So lets dive right into it. The following lists the supported touch events in JavaScript:

JavaScript Touch
Events Event Name

Description

touchstart Triggers when the user makes contact with the touch surface and creates a touch point inside
the element the event is bound to.

touchmove Triggers when the user moves the touch point across the touch surface.

touchend Triggers when the user removes a touch point from the surface. It fires regardless of whether
the touch point is removed while inside the bound-to element, or outside, such as if the user's
finger slides out of the element first or even off the edge of the screen.

touchenter Triggers when the touch point enters the bound-to element. This event does not bubble.

touchleave Triggers when the touch point leaves the bound-to element. This event does not bubble.

touchcancel Triggers when the touch point no longer registers on the touch surface. This can occur if the
user has moved the touch point outside the browser UI or into a plugin, for example, or if an
alert modal pops up.

These events can be attached to any element on the page, and is passed an event object containing details about the
touch point, such as its coordinates on the page. Use element.addEventListener() to attach the event(s), for example to
the BODY of the page:
1
2
3
4
5
6
7

window.addEventListener('load', function(){ // on page load

 document.body.addEventListener('touchstart', function(e){
 alert(e.changedTouches[0].pageX) // alert pageX coordinate of touch point
 }, false)

}, false)
Here I've attached the "touchstart" event to document.body once the page has loaded (you may want to do this on DOM-
ContentLoaded instead). Inside the anonymous function for touchstart, we look at the changedTouches object of the
Event object, which contains information on each touch point initiated by that touch event on the touch surface. Here
we're only interested in the first touch point (ie: finger) that has made contact, specifically, its pageX coordinate on the
page when the touch is made.
The Event object whenever a touch event is fired holds a wealth of information about the touch action; you already saw
its changedTouches object, which contains information on touch points changed since the last touch event . Lets take
the above example a bit further now, by bringing in the touchmove and touchend events to show the distance traveled
by a touch action from beginning to end on a DIV, from a finger touching down on an object to lifting up.
Example (mouse simulation added for non touch devices):

Touch Me!

Status: touchend
Resting x coordinate: 712px

Touch then move your finger to see the current state of the touch and the distance traveled. The HTML markup for the
DIV consists simply of:

1
2
3
4
5

<div class="box" id="box1">
<h3> Touch Me! </h3>
</div>

<h3 id="statusdiv">Status</h3>
The script looks like this:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

<script>

window.addEventListener('load', function(){

 var box1 = document.getElementById('box1')
 var statusdiv = document.getElementById('statusdiv')
 var startx = 0
 var dist = 0

 box1.addEventListener('touchstart', function(e){
 var touchobj = e.changedTouches[0] // reference first touch point (ie: first finger)
 startx = parseInt(touchobj.clientX) // get x position of touch point relative to left edge of browser
 statusdiv.innerHTML = 'Status: touchstart
 ClientX: ' + startx + 'px'
 e.preventDefault()
 }, false)

 box1.addEventListener('touchmove', function(e){
 var touchobj = e.changedTouches[0] // reference first touch point for this event
 var dist = parseInt(touchobj.clientX) - startx
 statusdiv.innerHTML = 'Status: touchmove
 Horizontal distance traveled: ' + dist + 'px'
 e.preventDefault()
 }, false)

 box1.addEventListener('touchend', function(e){
 var touchobj = e.changedTouches[0] // reference first touch point for this event
 statusdiv.innerHTML = 'Status: touchend
 Resting x coordinate: ' + touchobj.clientX + 'px'
 e.preventDefault()
 }, false)

}, false)

</script>
A few points worth mentioning here:

We call event.preventDefault() to prevent the default action associated with each event from occurring. In the case
of touchstart and touchend for instance, if the bound-to element was a link, not suppressing the default action would
cause the browser to navigate to the link, cutting short our custom sequence of actions. In the case of touchmove,
calling event.preventDefault() stops the browser from scrolling the page when the user is moving his finger inside
the bound-to element.

Once again, we access the first element inside event.changedTouches[] for each of the touch events to reference the
first touch point made to the element (there could be multiple fingers used), and examine the clientX property to get
the horizontal coordinate of the touch point relative to the left edge of the browser (not including any scroll offsets).
This property is adequate for what we're trying to do here, which is simply to get the relative distance traveled while
a touch is maintained on the element.

To get the distance traveled between touchstart and touchend events, we define a startx variable at the touchstart
phase that gets the starting clientX position of the touch. Then throughout the touchmove event, we get the clientX
position of the touch and subtract from it the startx value to get the distance traveled while the touch point is main-
tained.

Notice how the touchend event is still fired and displays the final resting x coordinates even if your finger is outside
the bound-to element at the time of lifting up your finger.

The object event.changedTouches[] is just one of numerous properties of the Event object that gets populated during
touch related events. It's high time to look at this object in detail now.

Event object during Touch

The Event object is this mystical unicorn in JavaScript that contains information on an event when it occurs, whether
it's the URL of a link in an onclick event, the keyCode of the key pressed in an onkeypress event etc. With touch related
events, the Event object is populated with a slew of unique properties that give us insight into all aspects of the touch
point, from how many fingers (or toes for that matter etc) touched down on the touch surface to their precise coordina-
tes on the screen.

Event Object du-
ring Touch Property

Description

altkey Boolean indicating whether the alt key was pressed at time of touch event.

changedTouches A list of Touch objects representing each touch point directly involved in this event. Speci-
fically:

In touchstart, it contains a list of fingers that have made contact with the touch surface du-
ring this touchstart event.
In touchmove, it contains a list of fingers that have moved during this touchmove event.
In touchend, it contains a list of fingers that have just been removed from the touch sur-
face during this touchend event.
In touchenter, it contains a list of fingers that have entered the touch surface during this
touchenter event.
In touchleave, it contains a list of fingers that have exited the touch surface during this
touchleave event.
You can use the length property to get the number of Touch objects inside changedTou-
ches[].

ctrlKey Boolean indicating whether the crtrl key was pressed at time of touch event.

metaKey Boolean indicating whether the meta key was pressed at time of touch event.

shiftKey Boolean indicating whether the shift key was pressed at time of touch event.

targetTouches A list of touch points currently making contact with the touch surface AND started out from
the same element that is the target of this event.
For example, lets say you bind the touchstart event to a DIV and place two fingers down on
the surface. targetTouches will only contain information on the finger(s) placed inside the
DIV, and not any outside.
You can use the length property to get the number of Touch objects inside targetTouches[].

touches A list of Touch objects representing all touch points currently in contact with the touch sur-
face, regardless of which element a touch point is on at the moment.

type The type of event that triggered the Event object, such as touchstart, touchmove, etc.

target The target element of the touches associated with this event.
So for example, during a touchstart event, the Event object's touches property lets us access all touch points currently in
contact with touch surface in general
1
2
3
4
5
6

document.body.addEventListener('touchstart', function(e){
 var touchlist = e.touches
 for (var i=0; i<touchlist.length; i++){ // loop through all touch points currently in contact with surface
 //do something with each Touch object (point)
 }
}, false)

The Event object's three properties evt.changedTouches, evt.targetTouches, and evt.touches are all list objects contai-
ning a list of Touch objects, one Touch object for each touch point made. It is through a Touch object you get details
about a specific touch point, such as its coordinates on the screen, its unique identifier to help you identify which touch
point is which, and so on. You saw in the beginning some code that accesses a Touch object contained inside evt.chan-
gedTouches:
1
2
3
4
5

box1.addEventListener('touchstart', function(e){
 var touchobj = e.changedTouches[0] // reference first touch point (ie: first finger)
 startx = parseInt(touchobj.clientX) // get x position of touch point relative to left edge of browser
 e.preventDefault()
}, false)

Here e.changedTouches[0] is a Touch object, with clientX being one property of the Touch object. Lets take a formal
look at the Touch object now:

Touch object Proper-
ty

Description

identifier An value to help uniquely identify each touch point currently in contact with the touch sur-
face. The value starts at 0 for the first unique touch point on the surface, 1 for the second etc.
This value is maintained for each touch point until the user's finger is lifted off the surface.
Lets say the user puts two fingers down on an element. Each finger at this point is assigned a
unique identifier. When you move the fingers, you can use each touch point's identifier to
identify which touch point is which.

screenX The x coordinate of the touch point relative to the left edge of the user's screen.

screenY The y coordinate of the touch point relative to the top edge of the user's screen.

clientX The x coordinate of the touch point relative to the left edge of the viewport, not including
scroll offsets.

clientY The y coordinate of the touch point relative to the top edge of the viewport, not including
scroll offsets.

pageX The x coordinate of the touch point relative to the left edge of the viewport, including scroll
offsets.

pageY The y coordinate of the touch point relative to the top edge of the viewport, including scroll
offsets.

radiusX The radius of the ellipse which most closely defines the touching area (e.g. finger, stylus)
along the x-axis.

radiusY The radius of the ellipse which most closely defines the touching area (e.g. finger, stylus)
along the y-axis.

rotationAngle The angle (in degrees) that the ellipse described by radiusX and radiusY is rotated clockwi-
se about its center.

force Returns the force of the touch point in the form of an integer between 0 and 1, where 0 is no
force as detected by the device, and 1, the highest.

target The target element of the touch point; in other words, the element the touch point landed on,
which may be different from the element its corresponding touch event was originally boun-
ded to. In the following, this always returns the BODY element, while Touch.target returns
the element the finger actually touched down on, which could be a DIV, a SPAN etc:
document.body.addEventListener('touchstart', function(e){
 var touchobj = e.changedTouches[0]
 console.log(this.tagName) // returns BODY
 console.log(touchobj.target) // returns element touch point landed on
}, false)

The properties of the Touch object you'll most frequently be accessing are those relating to coordinates, to help you de-
termine where, and with a little Math, in what direction and how fast a touch action is performed.
Lets rewind now back to the Event object and talk a bit more about the Touches, changedTouches, and targetTouches
properties, to help more clearly explain their differences:

Touches: A list of all touch points currently making contact with the touch surface.

changedTouches: A list of touch points involved in this event. For example, in a touchmove event, changedTouches
contains only a list of touch points that are currently moving, whereas Touches would contain all touch points cur-
rently on the surface.

targetTouches: A list of touch points currently making contact with the touch surface AND started out from the sa-
me element that is the target of this event. For example, lets say you bind the touchstart event to a DIV and place
two fingers down on the surface. targetTouches will only contain information on the finger(s) placed inside the DIV,
and not any outside.

Andrei at Stackoverflow gave a very illuminating example that clarifies the subtle differences between these three pro-
perties:

When I put a finger down, all three lists will have the same information. It will be in changedTouches because put-
ting the finger down is what caused the event
When I put a second finger down, touches will have two items, one for each finger. targetTouches will have two
items only if the finger was placed in the same node as the first finger. changedTouches will have the information
related to the second finger, because it’s what caused the event
If I put two fingers down at exactly the same time, it’s possible to have two items in changedTouches, one for each
finger
If I move my fingers, the only list that will change is changedTouches and will contain information related to as
many fingers as have moved (at least one).
When I lift a finger, it will be removed from touches, targetTouches and will appear in changedTouches since it’s
what caused the event
Removing my last finger will leave touches and targetTouches empty, and changedTouches will contain informa-
tion for the last finger

Moving an object using touch
Using touch to move a DIV horizontally or vertically across the screen is very simple. Take a look at the below, which
moves a DIV horizontally across a track when touched and dragged:
Example (mouse simulation added for non touch devices):

Drag

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

<script>

window.addEventListener('load', function(){

 var box2 = document.getElementById('box2'),
 boxleft, // left position of moving box
 startx, // starting x coordinate of touch point
 dist = 0, // distance traveled by touch point
 touchobj = null // Touch object holder

 box2.addEventListener('touchstart', function(e){
 touchobj = e.changedTouches[0] // reference first touch point
 boxleft = parseInt(box2.style.left) // get left position of box
 startx = parseInt(touchobj.clientX) // get x coord of touch point
 e.preventDefault() // prevent default click behavior
 }, false)

 box2.addEventListener('touchmove', function(e){
 touchobj = e.changedTouches[0] // reference first touch point for this event
 var dist = parseInt(touchobj.clientX) - startx // calculate dist traveled by touch point
 // move box according to starting pos plus dist
 // with lower limit 0 and upper limit 380 so it doesn't move outside track:
 box2.style.left = ((boxleft + dist > 380)? 380 : (boxleft + dist < 0)? 0 : boxleft + dist) + 'px'
 e.preventDefault()
 }, false)

}, false)

</script>

<div id="track" class="track">
<div id="box2" style="left:0; top:0">Drag Me</div>
</div>

The outer #track DIV is a relatively positioned element, while the #box2 DIV contained inside is absolutely positioned.
We get #box2 DIV's initial left position and the x coordinate of the touch point at the touchstart event. Note I'm using
touchobj.clientX here; we could have easily used touchobj.pageX instead, it doesn't matter, since we're only using this
property to help ascertain the relative distance traveled by touch point.
During the touchmove event, we calculate the distance traveled by the moving touch point, by getting its current x coor-
dinate and subtracting from that the initial x coordinate. Then, to move the #box2 DIV, we add that distance to the
DIV's initial left position, throwing in a lower and upper limit of 0 and 380px, so to prevent the DIV from moving outsi-
de the parent DIV. And with that our DIV box now moves with our finger!

Detecting a swipe (left, right, top or down) using touch
Swiping in touch is the act of quickly moving your finger across the touch surface in a certain direction. There is cur-
rently no "onswipe" event in JavaScript, which means it's up to us to implement one using the available touch events,
plus define just when a swipe is a, well, "swipe".
Lets first define when a movement across the touch surface should be considered a swipe. There are two variables at
play here- the distance traveled by the user's finger on the x or y-axis from touchstart to touchend, and, the time it took.
Based on these two factors, we can decide whether that action qualifies as a swipe and in what direction.
With that said, lets put ideas into action and see how to go about detecting a swipe right (from left to right). Once we
can do that, detecting swipe in the other 3 directions is pretty much identical. For this exercise we'll stipulate that a right
swipe has occurred when the user has moved his finger across the touch surface a minimum of 150px horizontally in
200 ms or less from left to right. Furthermore, there should be no more than 100px traveled vertically, to avoid "false
positives" whereby the user swipes diagonally across, which we don't want to qualify as a swipe right.
Example (mouse simulation added for non touch devices):

Swipe Me

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

<script>

window.addEventListener('load', function(){

 var touchsurface = document.getElementById('touchsurface'),
 startX,
 startY,
 dist,
 threshold = 150, //required min distance traveled to be considered swipe
 allowedTime = 200, // maximum time allowed to travel that distance
 elapsedTime,
 startTime

 function handleswipe(isrightswipe){
 if (isrightswipe)
 touchsurface.innerHTML = 'Congrats, you\'ve made a right swipe!'
 else{
 touchsurface.innerHTML = 'Condition for right swipe not met yet'
 }
 }

 touchsurface.addEventListener('touchstart', function(e){
 touchsurface.innerHTML = ''
 var touchobj = e.changedTouches[0]
 dist = 0
 startX = touchobj.pageX
 startY = touchobj.pageY
 startTime = new Date().getTime() // record time when finger first makes contact with surface
 e.preventDefault()
 }, false)

 touchsurface.addEventListener('touchmove', function(e){
 e.preventDefault() // prevent scrolling when inside DIV
 }, false)

 touchsurface.addEventListener('touchend', function(e){
 var touchobj = e.changedTouches[0]
 dist = touchobj.pageX - startX // get total dist traveled by finger while in contact with surface
 elapsedTime = new Date().getTime() - startTime // get time elapsed
 // check that elapsed time is within specified, horizontal dist traveled >= threshold, and vertical dist traveled <=
100
 var swiperightBol = (elapsedTime <= allowedTime && dist >= threshold && Math.abs(touchobj.pageY - star-
tY) <= 100)
 handleswipe(swiperightBol)

45
46
47
48
49

 e.preventDefault()
 }, false)

}, false) // end window.onload
</script>

<div id="touchsurface">Swipe Me</div>

Inside touchend, we check that the dist traveled from touchstart to touchend is a positive number above the specified
threshold value (ie: 150), since in a right swipe, that dist should always be positive based on the equation used (versus
negative for a left swipe). At the same time, we make sure any vertical lateral movement traveled is less than 100px to
weed out diagonal swipes. Since the vertical movement can occur either above the starting touch point or below, we use
Math.abs() when getting the absolute vertical dist traveled so both scenarios are covered when comparing it to our verti-
cal threshold value of 100.

A generic swipe detecting function
Now that we got right swipe down, lets create a more generic function that detects swiping in either of the 4 directions
(left, right, up, or down):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

function swipedetect(el, callback){

 var touchsurface = el,
 swipedir,
 startX,
 startY,
 distX,
 distY,
 threshold = 150, //required min distance traveled to be considered swipe
 restraint = 100, // maximum distance allowed at the same time in perpendicular direction
 allowedTime = 300, // maximum time allowed to travel that distance
 elapsedTime,
 startTime,
 handleswipe = callback || function(swipedir){}

 touchsurface.addEventListener('touchstart', function(e){
 var touchobj = e.changedTouches[0]
 swipedir = 'none'
 dist = 0
 startX = touchobj.pageX
 startY = touchobj.pageY
 startTime = new Date().getTime() // record time when finger first makes contact with surface
 e.preventDefault()
 }, false)

 touchsurface.addEventListener('touchmove', function(e){
 e.preventDefault() // prevent scrolling when inside DIV
 }, false)

 touchsurface.addEventListener('touchend', function(e){
 var touchobj = e.changedTouches[0]
 distX = touchobj.pageX - startX // get horizontal dist traveled by finger while in contact with surface
 distY = touchobj.pageY - startY // get vertical dist traveled by finger while in contact with surface
 elapsedTime = new Date().getTime() - startTime // get time elapsed
 if (elapsedTime <= allowedTime){ // first condition for awipe met
 if (Math.abs(distX) >= threshold && Math.abs(distY) <= restraint){ // 2nd condition for horizontal swipe
met
 swipedir = (distX < 0)? 'left' : 'right' // if dist traveled is negative, it indicates left swipe
 }
 else if (Math.abs(distY) >= threshold && Math.abs(distX) <= restraint){ // 2nd condition for vertical swipe
met
 swipedir = (distY < 0)? 'up' : 'down' // if dist traveled is negative, it indicates up swipe

43
44
45
46
47
48
49
50
51
52
53
54
55
56

 }
 }
 handleswipe(swipedir)
 e.preventDefault()
 }, false)
}

//USAGE:
/*
var el = document.getElementById('someel')
swipedetect(el, function(swipedir){
 swipedir contains either "none", "left", "right", "top", or "down"
 if (swipedir =='left')
 alert('You just swiped left!')
})
*/

swipedetect() accepts two parameters, the element to bind the touch events to, plus a function to execute when a swipe
has occurred. The function parameter "swipedir" tells you the type of swipe that was just made with five possible va-
lues: "none", "left", "right", "top", or "down".
The below uses the swipedetect() function to show a "left", "right", "top", or "down" background image (overlaid on top
of a default background image) depending on the swipe that has just occurred:
Example (mouse simulation added for non touch devices):

Swipe Me

The code used is:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

window.addEventListener('load', function(){
 var el = document.getElementById('touchsurface2')
 var inner = document.getElementById('inner')
 var hidetimer = null
 swipedetect(el, function(swipedir){
 if (swipedir != 'none'){
 clearTimeout(hidetimer)
 var bgimage = swipedir + 'arrow.png' // naming convention is "leftarrow.png", "rightarrow.png" etc
 inner.style.background = 'transparent url(' + bgimage + ') center center no-repeat'
 hidetimer = setTimeout(function(){ // reset background image after 1 second
 inner.style.background = ''
 }, 1000)
 }
 })
}, false)

The HTML markup is:
1
2
3
4
5

<div id="touchsurface2">
 <div id="inner">
 Swipe Me
 </div>
</div>

We bind swipedetect() to "#touchsurface2", and whenever a valid swipe has occurred inside it, we change the "#inner"
DIV's background image accordingly to reflect the type of swipe that has just occurred.

Monitoring touch actions at every stage, swipe image gallery
On the previous page, you saw how to detect swipes on a touch surface, and packaged that knowledge into a generic
swipedetect() function:
1
2
3
4
5

swipedetect(el, function(swipedir){
 // swipedir contains either "none", "left", "right", "top", or "down"
 if (swipedir =='left')
 alert('You just swiped left!')
})

That's all fine and dandy, but swipedetect() is limited in that it only lets us react to after a swipe has been made, and not
during, or as the user is moving his finger across the touch surface. The later is useful in applications that need to react
in tandem to a touch movement across the touch surface, such as an image gallery whereby the user can drag his finger
to get a preview of the next or previous slide.

A generic ontouch function
Lets set out to create a generic ontouch() function that can be used to execute custom code at every step of a touch ac-
tion, from the finger's initial contact with the surface, movement across, to lifting the finger up to end it. Surprisingly
it's not much different from our swipedetect() function, only that we'll be scrutinizing the touchmove event more closely
this time:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

function ontouch(el, callback){

 var touchsurface = el,
 dir,
 swipeType,
 startX,
 startY,
 distX,
 distY,
 threshold = 150, //required min distance traveled to be considered swipe
 restraint = 100, // maximum distance allowed at the same time in perpendicular direction
 allowedTime = 500, // maximum time allowed to travel that distance
 elapsedTime,
 startTime,
 handletouch = callback || function(evt, dir, phase, swipetype, distance){}

 touchsurface.addEventListener('touchstart', function(e){
 var touchobj = e.changedTouches[0]
 dir = 'none'
 swipeType = 'none'
 dist = 0
 startX = touchobj.pageX
 startY = touchobj.pageY
 startTime = new Date().getTime() // record time when finger first makes contact with surface
 handletouch(e, 'none', 'start', swipeType, 0) // fire callback function with params dir="none", phase="start", swi-
petype="none" etc
 e.preventDefault()

 }, false)

 touchsurface.addEventListener('touchmove', function(e){
 var touchobj = e.changedTouches[0]
 distX = touchobj.pageX - startX // get horizontal dist traveled by finger while in contact with surface
 distY = touchobj.pageY - startY // get vertical dist traveled by finger while in contact with surface
 if (Math.abs(distX) > Math.abs(distY)){ // if distance traveled horizontally is greater than vertically, consider
this a horizontal movement
 dir = (distX < 0)? 'left' : 'right'
 handletouch(e, dir, 'move', swipeType, distX) // fire callback function with params dir="left|right", pha-
se="move", swipetype="none" etc
 }
 else{ // else consider this a vertical movement
 dir = (distY < 0)? 'up' : 'down'
 handletouch(e, dir, 'move', swipeType, distY) // fire callback function with params dir="up|down", pha-
se="move", swipetype="none" etc
 }
 e.preventDefault() // prevent scrolling when inside DIV
 }, false)

 touchsurface.addEventListener('touchend', function(e){
 var touchobj = e.changedTouches[0]
 elapsedTime = new Date().getTime() - startTime // get time elapsed
 if (elapsedTime <= allowedTime){ // first condition for awipe met

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

 if (Math.abs(distX) >= threshold && Math.abs(distY) <= restraint){ // 2nd condition for horizontal swipe met
 swipeType = dir // set swipeType to either "left" or "right"
 }
 else if (Math.abs(distY) >= threshold && Math.abs(distX) <= restraint){ // 2nd condition for vertical swipe
met
 swipeType = dir // set swipeType to either "top" or "down"
 }
 }
 // Fire callback function with params dir="left|right|up|down", phase="end", swipetype=dir etc:
 handletouch(e, dir, 'end', swipeType, (dir =='left' || dir =='right')? distX : distY)
 e.preventDefault()
 }, false)
}

// USAGE:
/*
ontouch(el, function(evt, dir, phase, swipetype, distance){
 // evt: contains original Event object
 // dir: contains "none", "left", "right", "top", or "down"
 // phase: contains "start", "move", or "end"
 // swipetype: contains "none", "left", "right", "top", or "down"
 // distance: distance traveled either horizontally or vertically, depending on dir value

 if (phase == 'move' && (dir =='left' || dir == 'right'))
 console.log('You are moving the finger horizontally by ' + distance)
})
*/

During each phase of a touch action- "start", "move", and "end", we get things like the direction of the touch point, dis-
tance traveled, and at the "end" phase, whether the touch movement constituted a swipe in one of the four directions, ba-
sed on the same rules as that defined inside swipedetect() we saw earlier. The following illustrates ontouch in action to
show various info about a touch action over a DIV:
Example (mouse simulation added for non touch devices):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

<script>

window.addEventListener('load', function(){
 var el = document.getElementById('touchsurface2')
 ontouch(el, function(evt, dir, phase, swipetype, distance){
 var touchreport = ''
 touchreport += 'Dir: ' + dir + '
'
 touchreport += 'Phase: ' + phase + '
'
 touchreport += 'Swipe Type: ' + swipetype + '
'
 touchreport += 'Distance: ' + distance + '
'
 el.innerHTML = touchreport
 })
}, false)

</script>

<div id="touchsurface2">
</div>

A swipe image gallery
With the ontouch function, we can use it to create a swipe image gallery that responds to not just swiping for changing a
slide, but dragging to get a preview of the next slide. Take a look at the below:
Example (drag or swipe to move gallery, mouse simulation added for non touch device):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

<style>

.touchgallery{
position: relative;
overflow: hidden;
width: 350px; /* default gallery width */
height: 270px; /* default gallery height */
background: #eee;
}

.touchgallery ul{
list-style: none;
margin: 0;
padding: 0;
left: 0;
position: absolute;
-moz-transition: all 100ms ease-in-out; /* image transition. Change 100ms to desired transition duration */
-webkit-transition: all 100ms ease-in-out;
transition: all 100ms ease-in-out;
}

.touchgallery ul li{
float: left;
display: block;
width: 350px;
text-align: center;
}

.touchgallery ul li img{ /* CSS for images within gallery */
max-width: 100%; /* make each image responsive, so its native width can occupy up to 100% of gallery's width, but
not beyond */
height: auto;
}

</style>

<script>

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

window.addEventListener('load', function(){
 var el = document.getElementById('swipegallery') // reference gallery's main DIV container
 var gallerywidth = el.offsetWidth
 var ul = el.getElementsByTagName('ul')[0]
 var liscount = ul.getElementsByTagName('li').length, curindex = 0, ulLeft = 0
 ul.style.width = gallerywidth * liscount + 'px' // set width of gallery to parent container's width * total images

 ontouch(el, function(evt, dir, phase, swipetype, distance){
 if (phase == 'start'){ // on touchstart
 ulLeft = parseInt(ul.style.left) || 0 // initialize ulLeft var with left position of UL
 }
 else if (phase == 'move' && (dir =='left' || dir =='right')){ // on touchmove and if moving left or right
 var totaldist = distance + ulLeft // calculate new left position of UL based on movement of finger
 ul.style.left = Math.min(totaldist, (curindex+1) * gallerywidth) + 'px' // set gallery to new left position
 }
 else if (phase == 'end'){ // on touchend
 if (swipetype == 'left' || swipetype == 'right'){ // if a successful left or right swipe is made
 curindex = (swipetype == 'left')? Math.min(curindex+1, liscount-1) : Math.max(curindex-1, 0) // get new
index of image to show
 }
 ul.style.left = -curindex * gallerywidth + 'px' // move UL to show the new image
 }
 }) // end ontouch
}, false)

</script>

<div id="swipegallery" class="touchgallery">

</div>

Markup wise our gallery consists of a relatively positioned main DIV with an absolutely positioned UL element inside
it. Each of the LI elements (images) are floated left so they appear side by side horizontally. We set the total width of
the UL element to the width of the gallery DIV multiplied by the number of LI elements inside our script. With such a
set up, to show the 2nd image for example, we'd simply set the left position of the UL element to (nth image -1) * width
of gallery DIV (ie: 1 * 350).

Now to our ontouch function, which like a magic wand is what transforms our otherwise static series of images into a
touch and swipe image gallery! We call ontouch() and pass in a reference to the gallery's DIV container as the first para-
meter, or the element to monitor touch actions on. The anonymous function that follows lets us respond to all touch ac-
tions taking place inside on a granular level. When the user first touches down on the gallery, we get the current UL ele-
ment's left position (0 when page first loads). Then as the user moves his finger across the touch surface, if the dir is left
or right we access the distance parameter to get the distance traveled horizontally. That value when added to the UL's
initial left position gives us the new left position of the UL, which we then set the UL to, causing the gallery to move
left or right in tandem with the user's finger movement.

When the user lifts his finger off the gallery (phase equals "end"), we use the swipetype parameter to determine if a legi-
timate left or right swipe has occurred (versus just a slow drag for example). If so, we increment or decrement the cur-
rent index (curindex) of the gallery before moving the gallery to show the new image.
And there you have it. As you can see, implementing touch friendly UIs in JavaScript is relatively straightforward
thanks to the Touch API

